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A. INTRODUCTION 

Many research areas share a common methodo- 
logical concern with fitting pre -established 
dependency structures to data gathered from human 
subjects under conditions which introduce error 
into the measurement processes. Data are summar- 
ized, often, as a series of "successes" or 
"failures ", while a theoretical model postulates 
some kind of sequential dependency among the 
tasks. The purpose of this paper is to summarize 
a class of probabilistic models which is useful 
for analyzing data purported to reflect hierar- 
chic structures. The historical antecedents for 
the models discussed in this paper stem from the 
work of Lazarfeld and Henry (1968). Recent ad- 
vances in estimation and hypothesis testing are 
due to Proctor (1970), Murray (1971), Goodman 
(1974, 1975, 1976), Dayton and Macready (1976), 
and Macready and Dayton (1977a). For a more 
complete overview of the theory underlying these 
models and for applications to real data sets, 
the above references, as well as Macready and 
Dayton (1977b), may be consulted. 

B. THE GENERAL MODEL AND SOME SPECIAL CASES 

It is assumed that all respondents (subjects) 
can be, in theory, identified with a set of 
"latent classes" which represent the levels of an 
a priori hierarchic structure. Furthermore, this 

presentation is limited to dichotomous response 
data; that is, we assume K distinct tasks, each 
of which can be scored 0,1 for a sample of n 
respondents (such 0,1 scoring may result from a 
true point variable, or from artificial dichoto- 
mization of a continuous variable). For conven- 

ience, let be an observed response vector with 

elements 0,1 and let be one of q theoretical 

vectors corresponding to the latent classes in 

the hierarchic structure. The basic concept of 

the general probabilistic model is that the 

observed vectors arise from the theoretical vec- 
tors due to response errors which obey a law of 

local independence. Using the notation P(.) for 

probabilities, the model is: 

(1) P(us) E P(u vj)6j 

(2) 

where the parameters are: 
- the true proportion of respondents 

j which falls in the jth latent class 

ai - the probability of an intrusion error 

on task i 

- the probability of an omission error 

on task i 

numerical coefficients 

which are 0,1 and which relate the ob- 
served vector to the theoretical vector 
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(methods for determining these coeffici- 
ents are shown in connection with special 
cases of the model which are described 
below) 

Note that P(u % v.).is. the conditional proba- 

bility that the observed vector, u , arises from 

the jth latent class through the occurrence of 
appropriate intrusion and /or omission errors. 
Such conditional probabilities are, in turn, 
generated by a product of probabilities associa- 
ted with the individual tasks. The association 
of such (unconditional) probabilities with the 
tasks is equivalent to assuming a condition of 
local independence in the sense that a respond- 
ent's behavior is independent (without memory) 
across tasks. 

Although the general model as presented in 
equations (1) and (2) can be fitted to -data under 
certain circumstances, most of the applications 
which have been pursued to date have centered 
about simplified forms of the model. In Section 
C., we present some special cases so that, the 
form of the models and the notation utilized are 
made clear. Two classes of models are distin- 
guished: Extreme Groups Models and Hierarchic 

Models. In the cases of Extreme Groups, there 
are only two theoretical vectgrs - one correspon- 
ding to complete "failure ", = (0 0 ... 0), 

aVd one corresponding to complete "success ", 
v2 (1 1 1 ... 1). All other observed vectors 

must arise by intrusion or omission errors. Two 

special cases of the Extreme Groups Model are: 

Case 1 - each task has an unique intrusion 
and omission error component (ai and 

Case 2 - all intrusion occurs at a constant 
rate (a) and all omission at a constant rate (B). 

Within the class of Hierarchic Models, we include 

all linear and non -linear (e.g., convergent or 

divergent) hierarchies of arbitrary complexity. 
Four special cases of the Hierarchic Model are 
distinguished: 

Case 1 - and for the Extreme Groups 

Model, above; 
Case 2 - separate error rates (ai) per task, 

but intrusion and omission occur at this same rate 

for a given task (that is, Case 1 with 

Case 3 - intrusion (a) and omission (B) con- 

stant across tasks as in Case 2 of the Extreme 

Groups Model, above; 
Case 4 - a single error rate for intrusion 

and omission across all tasks (i.e., Case 3 with 

a B). 

It is evident that many other special cases 

can be defined by appropriate restrictions (or 

generalizations) with respect to the operation of 
errors. However, the cases referenced above have 

been studied both theoretically and practically. 

Ordinarily, the hierarchic stru6ture (set of 

latent classes) can be specified in detail on the 
basis of a priori considerations (e.g., a Guttman 
scale implies a linear hierarchy), but the way in 



which error probabilities enter into the model is 
more open to speculation. Thus, the various 
cases distinguished for Hierarchic Models permit 
some flexibility in fitting real data sets. 

C. PARAMETRIZATION OF THE MODELS 

(1) Case 1 of the Extreme Groups Model - 
For this special case, the only a priori vectors 
are (000... 0) and = (1 1 1 ... 1) 

and the probabilistic model in equations (1) and 
(2) simplifies considerably. Thus, 

P(u 1 = P(-s1 + P(u' -2)92 

Further, let the elements in u be denoted xis' 

so that 
= x2s, ; 

then, 

K x. 1-x 

P(u 
vl) = (1-a1 .) 

is 

i=1 

K 1-x x 

P(I v) = is(1-ßi) is 

i=1 

The topic of estimating parametric values 
from real data sets is discussed in Section D., 
below; since, in general, the various patterns 
of observed score vectors may have different 
probabilities of occurring under the models, it 

is apparent that estimation must be based on the 

total set of 2K observed score vectors. With 
the exception of Case 2 of the current model, 
this requirement to have data summarized for 
each of the 2K possible observed score vectors 

holds for all of the special cases considered 
in this paper. 

(2) Case 2 of the Extreme Groups Model - 

If we restrict the intrusion errors, ai, to a 

constant value (a) across the K tasks and the 
omission errors, to a constant value (ß) 

across the K tasks, Case 2 is obtained. For 

this case, the probabilistic model takes on an 
especially simple form since the number of 
errors necessary to account for the observed 
score vectors is a function of the total "score" 

K 
X = E xi associated with such a vector. Thus, 

1 =1 

P(Xl 

P(XI v2) 

where KCX is the combinations operator. Note 

that each of these conditional probabilities is 

of the form of a binomial and the model becomes, 

in effect, the mixture of two binomial processes 
with binomial parameters a and ß, and with mix- 

ture, Since all observed score vectors which 

yield the same score, X, have the same probabil- 

ity of occurring under this model, data can be 

analyzed from scores alone. That is, unlike 
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Case 1 where the 2K patterns are needed, the data 
can be summarized as K +1 score frequencies. Of 
course, this simplification makes the model less 
flexible with respect to representing real data 
sets. 

(3) Case 1 of the Hierarchic Model - This 
model is summarized in equations (1) and (2) 
without simplification. Unfortunately, for arbi- 
trary hierarchies (including linear forms), it 
does not seem to be possible to obtain estimates 
for all of the parameters simultaneously from 
real data sets by conventional estimation pro- 
cedures (maximum likelihood). For this reason, 
the model as embodied in Case 1 is non- identifi- 
able and we must turn our attention to the re- 
stricted cases in order to arrive at practical 
solutions. 

(4) Case 2 of the Hierarchic Model - For 
this case, trie intrusion and omission error rates 
are restricted to be equal for a given task, but 
each task has an unique error parameter (ai). 

Thus, the model in equation (2) becomes: 

K a.. 1 -a 

P(u vj) = ijs -S 
=1 

1 1 

where is 0,1 and determined as follows: let ai 
j s 

the elenent in 
u 

be x 
is 

the ith element 

in vj be t.j. Then, 

if xis - tij 

aijs 
otherwise 

In effect, whenever corresponding elements in the 
observed and theoretical vectors fail to match, 
aijs is given the value 1 and this introduces the 

error parameter into the model for this task. 
Otherwise, the value 1 -ai enters and this is the 

probability of not making an error for the ith 
task. 

(5) Case 3 of the Hierarchic Model - In 
dealing with hierarchic structures, we have had 
the most experience in applying this case since 

the number of parameters which must be estimated 
remains reasonably small even for fairly large 

numbers of tasks. The notion of separate intru- 
sion and omission error rates is retained, but 

these rates are assumed to be constant (or homo- 
geneous) across tasks. For notational purposes, 
let a be this constant intrusion error rate and 

be the constant omission error rate. Then, the 
model in equation (2) becomes: 

P(us = aaj$(1- a)bjs0cjs(1 

where the coefficients and djs are 

determined from the following rules based on the 

elements xis of 
-us 

and the elements tij of vj 



ajs is the number of times tij 0 when 

xis = 1 (number of intrusions) 

is the number of times 0 when 

xis = (number of non- intrusions) 

c is the number of times 1 when 

xis = 0 (number of omissions) 

is the number of times 1 when 

xis = 1 (number of non -omissions) 

D. ESTIMATION OF PARAMETERS 

Within certain broad limits of identifia- 
bility, parameter estimates can be obtained by 
means of computer -based algorithms for both types 
of Extreme Groups Model and for cases 2, 3, and 
4 of the Hierarchic Model. The method of estima- 
tion which is employed ordinarily is that of 
maximum likelihood. Unfortunately, there are no 
simple, algebraic formulae which can be derived 
for these models since they are non - linear in 
the parameters. Nevertheless, computerized pro- 
cedures can locate the maximum likelihood esti- 
mate if initial guessed values for all parameters 
are used and, then, iteratively improved until 
they converge on the appropriate values. Pro- 
grams developed by us have been based on Fisher's 
method of "scoring" and, in general, the final 
solution does not depend upon good choices for 
initial guessed values (i.e., the algorithm is 
relatively insensitive to starting values). How- 
ever, "boundary problems" arise with some regu- 
larity, and the programs have options which will 
force the final solution to take on acceptable 
values (i.e., all the a, and are restric- 

ted to the interval 0,1)1 
For a total of n respondents, the likelihood 

for the sample is: 

n q 

(3) L P(u ) n E P(u )6 
s=l j=1 

and the general method of solution involves 
solving the system of partial derivatives: 

2LogeL , j - 1,...,q -1 

2LogeL /Dai = = 1,..., K 

2LogeL /2ßi = , i = 1,..., K 

with suitable restrictions placed on the and 

to provide non -singularity (identifiability) 

for the system. Computation of the derivatives 
is greatly simplified if Fisher's method of 

scoring (Rao, 1965) is used and solution of the 

system can be pursued iteratively by the method 

of Newton - Raphson. An important by- product of 
this approach is that the matrix of partial 
second derivatives provides a basis for estimat- 

ing large -sample sampling variances of the para- 

meter estimates (i.e., the inverseof this 
matrix, with signs changed, contains asymptotic 
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variances and covariances for the estimates when 
maximum likelihood estimates are substituted in 
the second partial derivatives). Further discus- 
sion of the conditions for identifiability and 
problems concerning boundaries for the estimates 
is presented in Dayton and Macready (1976). 

E. ASSESSING GOODNESS OF FIT 

Given the computerized estimation procedures 
which are available, it is possible to derive 
maximum likelihood estimates of the parameters if 
there are sufficient degrees of freedom once all 
parameters are specified and if the system of 
equations based on (3) is identifiable. However, 
the estimates do not necessarily provide good fit 
to the observed data. An assessment of goodness 
of fit can be made in several ways, but the sim- 
plest procedure is to utilize the maximum like- 
lihood estimates of P(u ) for each of the 2K 

types of observed score vectors and, then, to 

apply an ordinary (Pearson) chi -square goodness- 
of -fit test based on observed and expected fre- 
quencies for these 2K types. alternative 
method which yields generally comparable values 
for the test statistic is the likelihood ratio 
chi -square test which, in effect, compares the 
expected frequencies (generated as for the 
Pearson case) with those arising under an unre- 
stricted multinomial model. Degrees of freedom 
for both types of test are computed as 2K - m - 1, 
where m is the number of independent parameters 
estimated under the probabilistic model (i.e., 
for Case 1 of the Extreme Groups Model m = 2K + 1, 
while for Case 2, m = 3; for Hierarchic Models, 

under Case 2, m = K + q - 1, under Case 3, 
m q + 1, and under Case 4, m q). 

In addition to assessing how well a given 

model fits an observed set of data, it is 

possible to compare the differential fit of 

alternate models under certain circumstances. 
A general rule is that the model with fewer 

parameters must be derivable, in theory, by a 

process of parameter restriction from the model 
which has the greater number of parameters. For 

example, Cases 1 and 2 of the Extreme Groups 
Model can be compared for differential fit since 

Case 2 can be derived from Case 1 by the restric- 

tions ai = a, ßi ß_for i = 1,...,K. However, 

Cases 2 and 3 of the Hierarchic Model cannot be 

compared since neither case can be obtained from 

the other by a single set of restrictions; note, 

nevertheless, that Case 4 can be derived from 

either Case 2 or Case 3 and can be compared with 

either of these. An appropriate test statistic 

for comparing the relative fits of two models 

which meet the preceding conditions can be based 

on the difference between their respective good - 

ness -of -fit chi -square. values (based on either 

the Pearson or likelihood ratio approach) with 

degrees of freedom equal to the difference in 

degrees of freedom from these same two tests. 



FOOTNOTE 

1The authors will make available at no cost a 
Users Manual and single -copy listings of FORTRAN 
programs for all cases discussed above, with the 
exception of Case 1 of the Hierarchic Model. 
Written requests should be sent to the Depart- 
ment of Measurement & Statistics, College of 
Education, University of Maryland, College Park, 
Md. 20742 
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